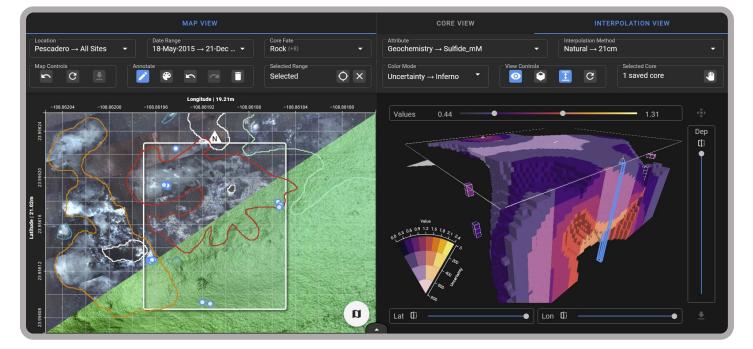
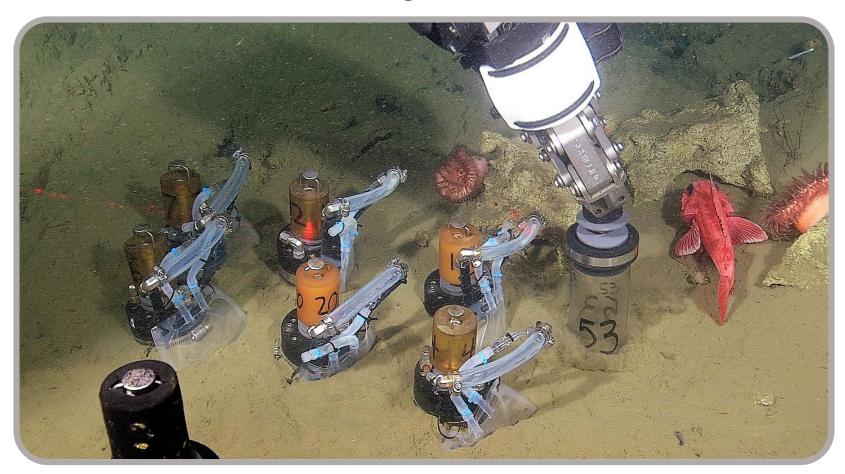


DeepSee


Multidimensional Visualizations of Seabed Ecosystems

Gr Adam Coscia

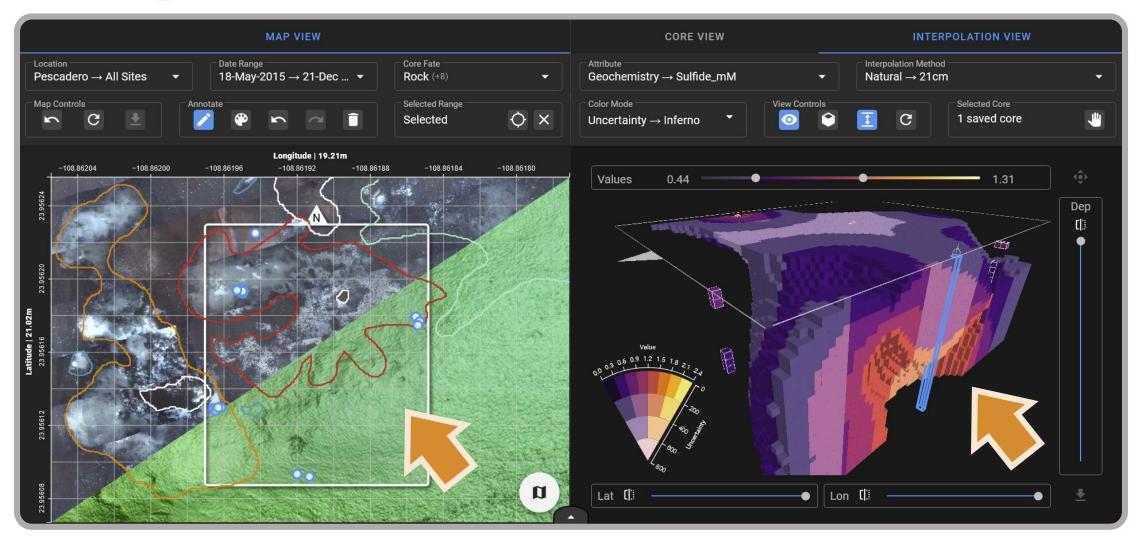

- Haley M. Sapers
- Noah Deutsch
- Malika Khurana
- John S. Magyar
- Sergio A. Parra
- Daniel R. Utter
- Rebecca L. Wipfler
- David W. Caress

Scientists collect **sediment samples** from the **deep ocean** to study **microbial ecology!**

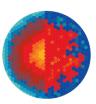
Scientists collect **sediment samples** from the **deep ocean** to study **microbial ecology!**

However, diving / collecting samples is **time-consuming** and **expensive**.

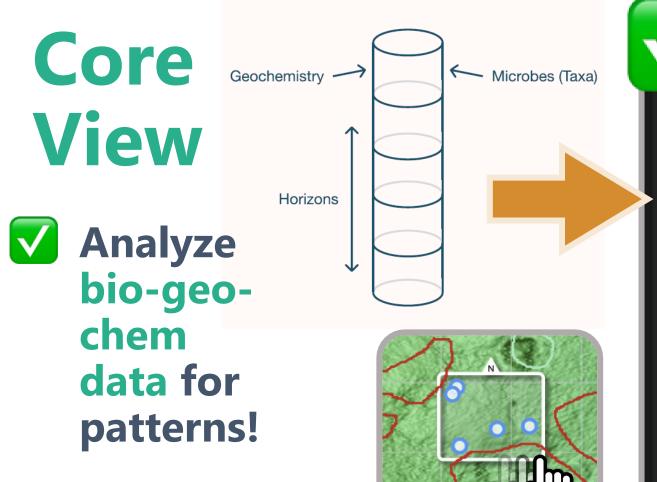
How to help scientists analyze prior samples to decide where to dive next?



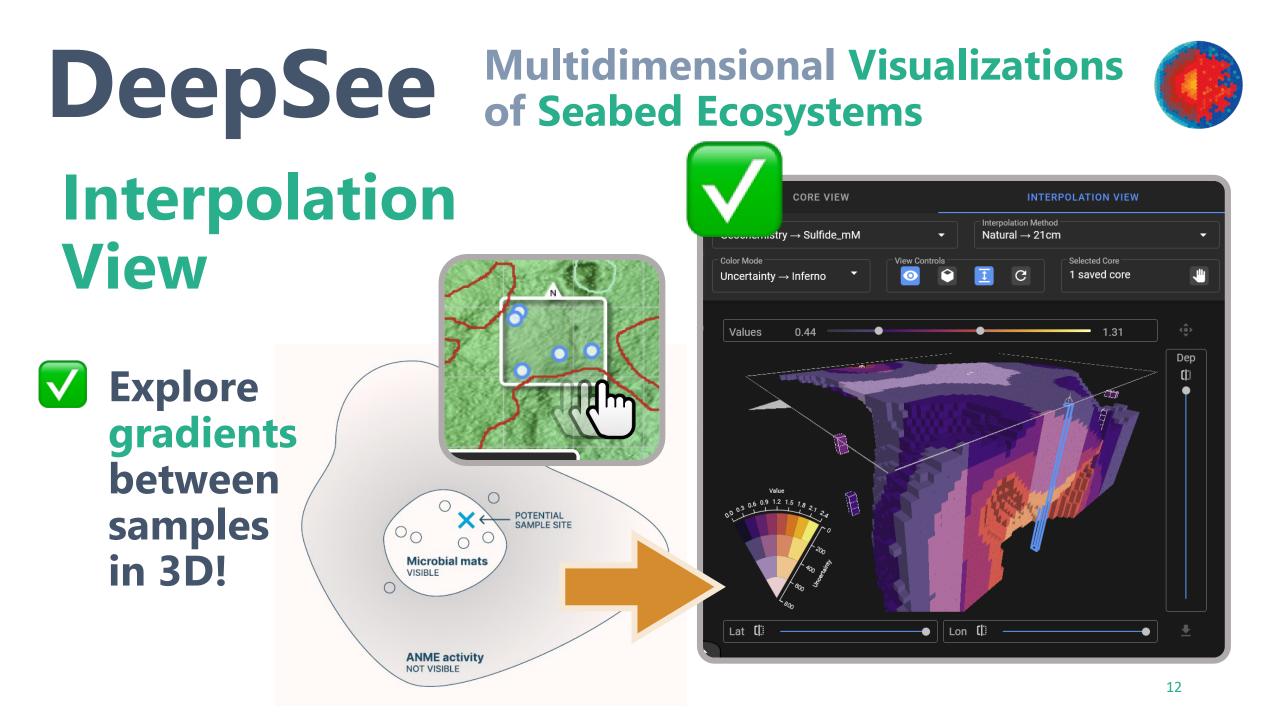
Our Goals

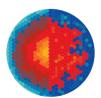

- Design a visualization system to explore spatial trends between samples in context of the environment
- Deploy our system on a **field research expedition** to measure the impact on scientists' workflows
- Develop design guidance for visualizing prior sample data to decide where to sample in the future

Multidimensional Visualizations DeepSee of Seabed Ecosystems

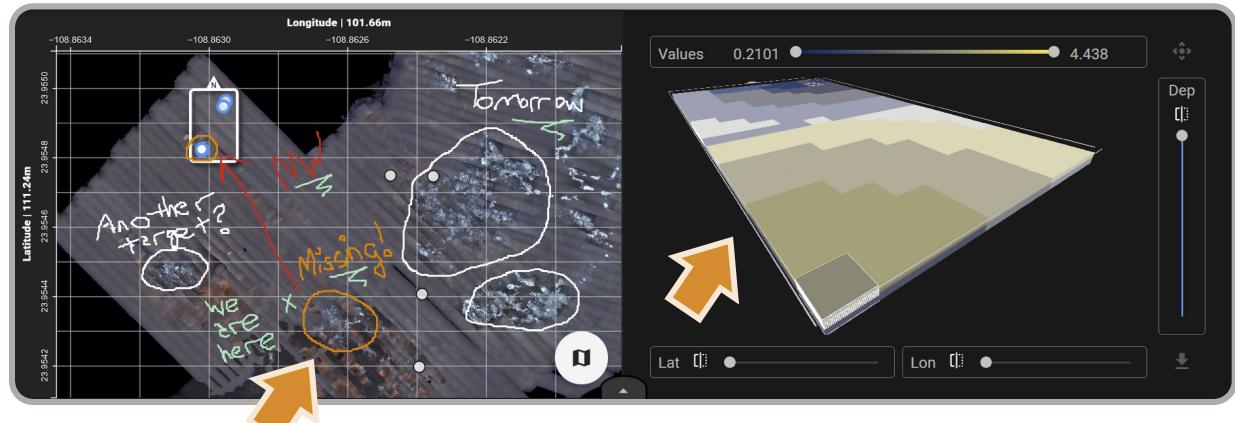


Map View

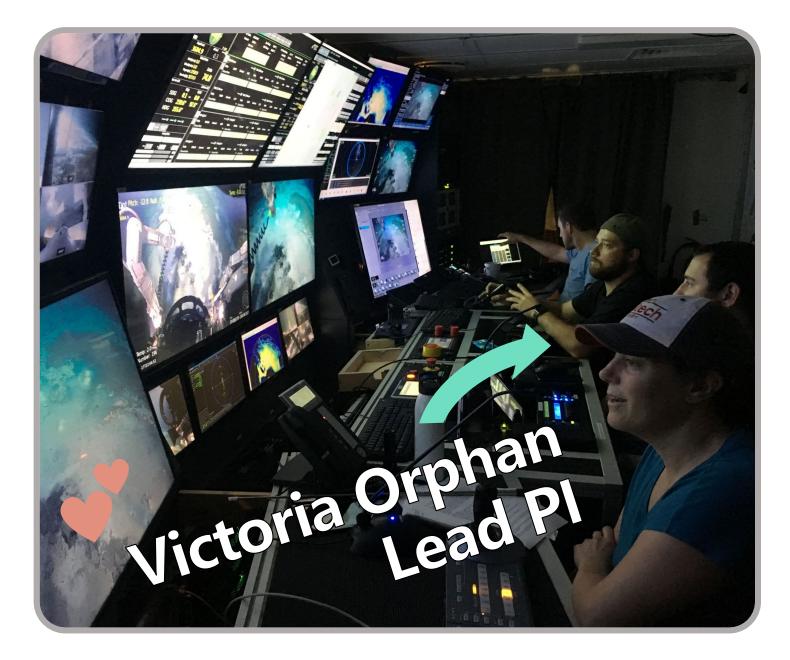

Visualize sample data on top of maps!


	te le	isert Draw	Page Layo	ut Form	ulas Da	ta Revi	ew Vi
h	X	Calibri (Body)	* 12	A . A.	= =	= 🗞	
P	atta	BIU		<u>A</u> - <u>A</u> -	= =		•=
	- V						
0	Possible D	ata Loss Some fea	tures might	be lost if you	save this w	orkbook in t	he comm
A1	¢	$\times \sqrt{f_X}$ Sa	mple_Name				
4	A	в с	D	E	F	6	н
1 5	Sample Nar	ierial_Numt Dive	Core	Location	Site	Surface	Depth
	FK181031-11	11703 50193	PCS	Auka	Diane's vent		3656
	FK181031-11	11704 50193	PCS	Auka	Diane's vent		3656
	FK181031-11	11705 50193	PCS	Auka	Diane's vent		3656
	K181031-11	11706 50193	PCS	Auka	Diane's vent		3656
	FK181031-11	11707 50193	PCS	Auka	Diane's vent		3656
7 1	FK181031-11	11708 50193	PCS	Auka	Diane's vent	blue met	3656
8 F	FK181031-11	11709 \$0193	PC5	Auka	Diane's vent	blue mat	3656
9 8	FK181031-11	11713 50193	PC3	Auka	Diane's vent	blue mat	3656
10 F	FK181031-11	11721 50193	PC7	Auka	Diane's vent	peach mat	3656
	FK181031-11	11722 50193	PC7	Auka		peach mat	1656
12 F	FK381031-11	11723 50193	PC7	Auka		peach mat	3656
13 F	FK181031-11	11724 50193	PC7	Auka		peach mat	1650
14 F	FK181031-11	11725 50193	PC7	Auka		peach mat	3656
	FK181031-11	11726 50193	PC7	Auka	Diane's vent		3656
	FK181031-11	11727 50193	PC7	Auka		peach mat	3656
	FK181031-11	11728 50193	PC7	Auka		peach mat	3656
18 F	FK181031-11	11729 50193	PC7	Auka		peach mat	3656
19 F	FK181031-11	11730 50193	PC7	Auka		peach mat	3656
20 F	FK181031-11	11732 50193	PC1	Auka		Gray mat by	3657
	FK181031-11	11735 50193	PC1	Auka		Gray mat by	
	K181031-11	11737 50193	PC2	Auka		Gray m	
	FK181031-11	11738 50193	PC2	Auka		Gray m	
	K181031-11	11739 50193	PC2				
	FK181031-11	11740 50193	PC2				
	FK181031-11	11745 50194	PC4				
	FK181031-11	11746 50194	PC4				
	FK181001-11	11747 50194	PCA			- 1 A - 2 - 2	
	FK181031-11	11748 50194	PC4			44	6. N.
	FK181031-11	11749 50194	PCA			and the second	
	FK181031-11	11751 50194	PC4	1	1000		
	FK181031-11	11753 50194	PC4		Sec. Constant		-
	FK181031-11	11760 50194	PC3	1 2 13	C. Carl	1 m 8	PH S
	FK181031-11	11763 50194	PC3				
	FK181031-11	11770 50194	PC1	754		The state	111
	FK181031-11	11771 50194	PC1	1 1 1 1		AND LONG	14
	K181031-11	11772 50194	PC0	1			
	11 1001031-11	11772 50194	000	and the second			
		scadero Geo	-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A DE DESCRIPTION		

7:	×	S0198_PC3	×	S0198_PC5	×	
Type: Geochen	n	Type: Live+Geochem		Type: temperature		
Date: 2018-11-	17	Date: 2018-11-19		Date: 2018-11-19		
Horizon	Value	Horizon	Value	Horizon	Value	
0_1	0.01	1_2	2.19	1_2	1.99	
0_1	0.01	2_3	0.68	2_3	2.26	
2_3	0.04	3_4	0.61	3_4	0.81	
4_5	0.01	4_5	0.65	4_5	0.64	
5_8	1.26	5_8	0.46	5_8	0.15	
5_8	1.26	5_8	0.46	5_8	0.15	
5_8	1.26	5_8	0.46	5_8	0.15	
8_11	2.16	8_11	0.01	8_11	0.04	
8_11	2.16	8_11	0.01	8_11	0.04	
8_11	2.16	8_11	0.01	8_11	0.04	
11_14	2.01	14_17	0.01	11_14	0.24	
11_14	2.01	14_17	0.01	11_14	0.24	
11_14	2.01	14_17	0.01	11_14	0.24	
14_17	1.30			14_17	0.01	



Scenario: Pre-Cruise Planning



Scenario: On-the-Fly Decision-Making

Evaluation

We deployed DeepSee on a research cruise in the Gulf of California!

Evaluation

We deployed DeepSee on a research cruise in the Gulf of California!

We conducted expert interviews with scientists from the research cruise

- **Fluid interaction** between **micro/macro scale data** helped researchers visually discover more insights
- Integrating 2D/3D data together increased the scientific return on value of limited samples
- Modular visualizations rapidly solved a diversity of specific, directed research tasks for different team members

We synthesized lessons learned for designing future visualization systems

- **Prioritize** data integration as a user task
- Visualize physical data in context of the environment
- **Combine** data types in new ways to bridge analysis gaps
- **Design** interactive visualizations to aid mental modeling

Future directions for DeepSee

- **Enhanced** data analysis (e.g., phylogenetic history)
- **New models** for large-scale interpolation
- **Notebook visualizations** in other fieldwork domains
- Studying interactions with DeepSee to train future autonomous sampling systems

DeepSee

🗣 Adam Coscia

- Haley M. Sapers
- Noah Deutsch
- Malika Khurana
- John S. Magyar
- Sergio A. Parra
- Daniel R. Utter
- Rebecca L. **Wipfler**
- David W. Caress

- Fric J. Martin
- Vennifer B. Paduan
- Maggie Hendrie
- Santiago Lombeyda
- Hillary Mushkin
- Gr Alex Endert
- Scott Davidoff
- 🚯 Victoria J. **Orphan**

Check out our **live** demo & **open-source** code!

