Chatting with Your Clock: Using Conversation to Design a
Voice User Interface

Adam Coscia
Georgia Institute of Technology
North Ave
Atlanta, GA 30332 USA
acosciab @gatech.edu

ABSTRACT

Low fidelity in speech recognition technology has resulted in
the development of voice user interfaces (VUIs) that priori-
tize mechanics at the expense of affordance and feedback in
their design. In this paper we present a prototype VUI that
“converses” with the user by generating novel forms of feed-
back. The VUI is incorporated into both an alarm and a cal-
endar tool to ground our approach in a common application
space. Our system addresses errors through conversation as
well, ultimately improving affordances and feedback while
minimizing the loss in mechanics. We discuss the potential
of this affordance- and feedback- first approach to improve
human-machine interactions, culminating in more informed
VUI development practices.

ACM Classification: HS5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Graphical user interfaces.

General terms: System, Design, Human Factors

Keywords: audio, speech, speech interfaces, speech recog-
nition, conversation, natural language processing, nlp

INTRODUCTION

Recent advances in software capabilities have spurred a growth
in ”smart” user interfaces for hardware, such as phones and
computers, integrated with an intelligent personal assistant
[10]. These software agents take in user commands or ques-
tions and perform various tasks and services. One of the most
popular forms of assistant, used by over 50% of US adults
as of April 2020 [14], is the voice assistant built directly
into a hardware’s operating system. Several major technol-
ogy companies have commercialized a version of the intel-
ligent voice personal assistant, including Apple (Siri), Mi-
crosoft (Cortana), Amazon (Alexa) and Google (Google As-
sistant). Open-source voice software such as Mycroft Al have
also been created to allow anyone to develop voice assistant
technology for their own projects. The ubiquity, capability
and usage of the voice assistant integrated with an operat-

ing system reveals a strong desire for user interface design to
incorporate speech in near-future systems.

As such, the principles of user interface software underly-
ing the concept of a Voice User Interface (VUI), including
affordances, feedback, and mechanics [12], are an impor-
tant tool for understanding and designing VUIs. VUIs have
several advantages when it comes to Ul design:

(1) accessibility — they only require speech to control them
and they can be incorporated into ubiquitous devices, such as
smart phones;

(2) familiarity — speech is a very well known and utilized
form of communication across the world; and

(3) mechanics — they promote very fast information retrieval
and require minimal physical effort.

At the same time, VUIs have several disadvantages as a Ul
design:

(1) error rate — they are prone to frustrating errors, both in the
recognition of the user’s voice as input, and in the synthesis
of human-sounding speech when the system responds to the
user’s input;

(2) affordances — they have extremely poor affordances, es-
pecially for users that are not tech savvy and may not know
what they can do with the interface; and

(3) feedback — depending on the available speech recogni-
tion and synthesis software, VUIs can often have mixed feed-
back that is not guaranteed to help the user understand what
they’ve done and whether it was successful.

Areas of related research, including natural language pro-
cessing (NLP), have made strides in processing human speech
as text, which in turn can resolve many of the disadvantages
brought about when using speech as a Ul input. Yet current
voice user interfaces, such as those implemented in voice as-
sistants like Siri, still prioritize mechanics to overcome errors
at the expense of desirable affordances and feedback. This
can lead to poor user experiences, discouraging accessibility
and representation for diverse users and overall adoption and
growth of VUI-integrated technologies. Therefore we ask:
how can we design a system that “converses” with the user
to improve affordances and feedback?

In response, we present a conversational VUI that prioritizes
affordances and feedback while minimizing the loss in me-
chanics to provide a more positive user experience. By gen-
erating novel forms of feedback, we address errors through
conversation. Our interface is integrated with both an alarm
application and a calendar application, two common UI ap-
plication spaces, to ground our approach in real-world sce-
narios. We posit that our system can drive an affordance- and
feedback- first approach to future VUI development, improv-
ing human-machine interactions and culminating in more in-
formed VUI development practices.

Our contributions include (1) a conversational VUI prototype
(https://github.com/AdamCoscia/Conversa
tional-VUI), (2) an understanding of how existing Ul
frameworks and toolkits can encourage or inhibit the inte-
gration of a VUI, and (3) a set of guidelines for developers
looking to incorporate VUIs into future applications.

RELATED WORK

UI research has a rich history of exploring how speech can
be used to create technology that engages and supports users
and their tasks. Here we describe the advancements made
in designing speech interfaces and the associated challenges
implementing these interfaces.

Speech Interface Design

Progenitors of modern VUI’s defined the basic requirements
needed for recognizing speech and responding, providing
insight into the most important elements of any new VUL
The 1976 Harpy Speech Recognition System [8] used a fi-
nite state transition network to store knowledge and search-
ing a network of 1000 words for optimal paths based on a
command keyword. Voice Activated Link (VAL), a 1996
precursor to modern dial-in voice-activated menus, featured
speech synthesis capabilities for producing auditory feed-
back to user’s spoken commands. [9]. Today, Google’s
Search By Voice technology, a combination of improved
grammar search and speech synthesis, aims for the ubiquity
of spoken access by improving availability and performance
[15]. The progression of voice technology reveals a desire for
robust contextual responses and speech synthesis in a mod-
ern, human-centered VUI.

Accessibility issues have necessitated tools which can utilize
context to improve interactions. Capti-Speak [3], a speech-
enabled screen reader and web browser for the visually-
impaired, translates speech utterances into browsing actions,
executes the actions, and provides audio feedback. Tasks are
determined in various ways: in the case of a standard short-
cut, Capti-Speak consults a pre-defined shortcut-task knowl-
edge base in order to determine the intended task; in the case
of a speech utterance, Capti-Speak first converts the utterance
to text using the Speech Recognizer module (Google ASR)
and passes the recognized text on to its Input Interpreter.
From the text, the interpreter then extracts information de-
scribing the corresponding intended task (action) to be per-
formed and the target object. The interpreter uses personali-
ties that are divided into four categories based on the degrees
(high or low) of warmth and competence to determine the
appropriate response. Stifleman et al.’s Audio Notebook [16]
employs user structuring and acoustic structuring to unbur-

den the user from high cognitive loads while taking notes by
engaging with voice as the interaction medium. Moubayed
and Lehman [1] investigated how audience, specifically chil-
dren, can impact design. They designed a speech-controlled
robot-child game utilizing Microsoft Speech Analyzer to ac-
count for the grammar a child would use to interact with
a robot, such as saying ’jump jump jump’ instead of just
“jump’. By addressing these and other accessibility concerns,
existing design guidelines for VUI development consider the
personal relationship the user has with the technology to craft
a more engaging experience.

Central to the relationship between the user and machine is
how speech is communicated back to the user; i.e., speech
synthesis. Yankelovich and Lai [19] classify speech synthe-
sizers along several dimensions. Parameterized synthesizers
are small and fast but do not sound very natural. In com-
parison, concatenative synthesizers sound more natural but
also use more resources. Some speech synthesizers need
to be trained on a particular speaker’s voice, whereas oth-
ers can be speaker-independent. Speech recognizers require
the use of a definite grammar, while others allow only certain
phrases for control and some are purely based on statistical
models. Text-to-speech (TTS) systems [2] translate text into
utterances using the various synthesizers above. It is impor-
tant that synthesizers prioritize naturalness and intelligibility
characteristics in their output [17].

Challenges Interpreting Speech

Implementing speech systems in real-world applications has
exposed many issues for designers of VUI’s to address, such
as incorrect recognition, dialect constraints, limited vocabu-
lary and latency issues [21].

Yankelovich et al. [20] describe several issues in creating
VUT’s and discuss best practices that should be implemented
while designing them: (1) recognition errors, such as word
error rate; and (2) nature of speech, or a lack of visual feed-
back in speech-only systems that can cause uncomfortable
silences for the user while the user is waiting for the device
to respond. The first issue, recognition errors, can be further
divided into three categories: (a) rejection errors, or when
recognizers fail to understand an utterance, (b) substitution
errors, or when recognizers substitute an incorrect word in
an utterance, and (c) insertion errors, or when recognizers
misinterpret noise as an utterance. To minimize rejection er-
rors, the designer should avoid the ‘brick wall effect’, where
every time the recognizer does not understand something, it
provides the same response, such as “Sorry, I did not under-
stand that”. Rather, the device should have various different
responses. In case the recognition of speech fails, it causes
an overhead for the user who usually has to stop the conver-
sation and correct the error.

Grammar selection is equally as vital. Speech recognition ac-
curacy depends heavily on the size, coverage, and complexity
of the language model used for recognition. Use of domain-
specific grammar and vocabulary can be a reasonable choice
in order to maximize recognition rates and avoid negative
user experiences. Poorly designed grammars may also force
users to use unnatural language and make speech recogni-
tion tedious to use [18]. A potential solution in speech-based

rapid prototyping tools is a threshold that triggers recogni-
tion has been set fairly high. These systems strive to avoid
error even at the cost of not providing exact feedback [21].

SYSTEM

We built a browser-based client-side VUI integrated with
both an alarm and a calendar application using pure JavaScript.
The source code and a detailed README on how to use and
edit the tool can be found in this GitHub repository:

https://github.com/AdamCoscia/Conversati
onal-VUI

A live demo of the tool can be found here:

https://adamcoscia.github.io/sections/pr
ojects/Conversational-VUI/index.html

The choice to make the VUI in the browser was motivated by
several factors:

(1) JavaScript has a rich diversity of robust libraries built
for audio input and output (I/O), speech recognition. speech
synthesis, and natural language processing (NLP);

(2) the browser is one of the most ubiquitous and accessible
interfaces for a wide audience today; and

(3) aclient-side browser-based application can be easily hosted
and shared for many years with little to no maintenance.

We detail the various facets of the implementation strategy
as well as the final build of the tool below.

Design Guidelines

We synthesized various speech interface design guidelines
[13, 20, 19] to afford users with the ability to converse with
the system. In summary, our system attempts to respond to
user requests with a diverse set of possible utterances and
different behavior based on conversational context, described
below.

Error Handling Our conversational voice user interface strives
to avoid three common errors in a traditional speech inter-
face: (1) insertion error, (2) substitution error, and (3) rejec-
tion error. We address these common errors in the following
ways:

(1) insertion error — our system disables the input features of
the GUI when the system is processing or speaking so that
the user knows it is not currently accepting input;

(2) substitution error — our system only asks the user to con-
firm an action if it would delete or stop showing certain in-
formation. This in turn reduces the number of times the user
must verify a command; and

(3) rejection error — our system offers guidance based on
heard utterances; e.g., if the word “alarm” is heard, but the
context of the sentence is lost, the system guides the user
towards working with an alarm instead of having the user
repeat themselves.

GUI

We created a basic graphical user interface (GUI) to help
users debug the application. The GUI presents a few graph-
ical input modalities to help the user begin using the tool.
Towards the top of the application are Voice Settings, which
control the accent, rate, and pitch of the synthesized voice
that responds to the user’s input. As stated earlier, it is criti-
cal that speech synthesizers prioritize naturalness and intel-
ligibility in their output [17]. We used the SpeechSynthesis
interface of the Web Speech API [11] (described in Architec-
ture below), which offers a multitude of regional accents to
help users interpret the synthesized responses from the sys-
tem. At any time, the user can press the 7est voice button
to hear a message read aloud by the synthesizer with their
current settings.

Below this, the Start recording button is used as a switch to
allow the browser to begin listening to sounds from the user’s
microphone and interpret them as human speech. This at-
tempts to mitigate insertion errors through a more affordance-
first approach. The alternative (i.e., a system controlled
solely through voice) cannot resolve such errors. Once pressed,
recording will commence immediately and will not stop un-
til the system recognizes that the user has spoken something
and then stopped speaking. This is the main input modal-
ity for telling the system to take in user input, and the only
way for the system to initiate recognition and subsequently
synthesize a response.

Finally, the Show/hide output button can be pressed to show
or hide the area below the button which automatically records
the conversation being had as visual text data. This was pro-
vided to show that the system can function with and without
visual feedback.

Vul

The applications can be interacted with through the voice
user interface by pressing the Start recording button and
speaking aloud. We modeled the tasks a user can perform
based on built-in tools widely distributed in both iPhone and
Android smart phones and on desktop computers. For exam-
ple, clock applications, such as Google’s Clock app [7], let
the user work with time management tools such as an alarm.
Calendar applications, such as Microsoft’s Outlook app [4],
let the user work with date and event tools such as an calen-
dar. Using these applications grounds our methodology in a
widely used and accessible application space for user inter-
face development.

Alarm Application By pressing the Start recording button,
the user can begin using the alarm application. We enumer-
ate the operations that users can perform with our alarm ap-
plication as follows:

(1) set — the user can create an alarm that is enabled by de-
fault, e.g., by saying “please set an alarm for Sunday at four
a.m.”’;

(2) enable/disable — the user can enable or disable an alarm
without deleting the alarm, e.g., by saying "please enable my
alarm for Sunday at four a.m.”;

(3) edit — the user can change the time, date, enabled or dis-

CS 6456 Group Project

Press the "Start recording' button to talk with the system

11/23/2021, 1:17:29 AM

Rate 1 g Pitch 1 e—

‘ ‘ Show/hide output

Test voice Voice Settings \Google US English (en-Us) ~
Start recording
Time Speaker Result Utterance
1:16:36 AM User Keyword please set an alarm
1:16:46 AM User Keyword tomorrow
1:16:56 AM User Keyword 2p.m.
1:17:07 AM User Keyword thank you can you make an event for 1 p.m.
1:17:15 AM User Keyword 2 hours

Figure 1: The graphical user interface for the system. Users can manage synthesized voice settings in the first row as
well as provide input to the speech recognition engine and show/hide the output in the second row.

abled status of an existing alarm, e.g., by saying “’please edit
my alarm on Sunday to be for Saturday”’; and

(4) delete — the user can remove an existing alarm, e.g., by
saying “’please delete my alarm on Sunday”.

When the exact date and time occurs for an existing alarm
that is enabled, the system will play an alarm sound for sev-
eral seconds to alert the user that the alarm has been trig-
gered. The example phrases are not exhaustive, as the sys-
tem was built to understand a decently wide variety of input
phrases which accomplish the operations above.

Calendar Application By pressing the Start recording but-
ton, the user can begin using the calendar application. We
enumerate the operations that users can perform with our cal-
endar application as follows:

(1) set — the user can create calendar events, e.g., by saying
“please set an event on Sunday at four a.m. for 2 hours”;

(2) edit — the user can change the date, time, or duration of
an existing event, e.g., by saying “please edit my event on
Sunday at four a.m. to be 1 hour long”; and

(3) delete — the user can remove an existing calendar event,
e.g., by saying “’please delete my event on Sunday”.

The example phrases are not exhaustive, as the system was
built to understand a decently wide variety of input phrases
which accomplish the operations above.

Architecture

The tool is entirely client-side, browser-based, and written in
pure JavaScript. The complete list of included libraries and
a short of description of their purpose in this project follows.

Web Speech APl The Web Speech API [11] is a proposed
web standard API that exposes two interfaces, SpeechSyn-
thesis and SpeechRecognition, which provide speech capa-
bilities in the browser. The SpeechSynthesis interface syn-
thesizes human speech in web-based applications. This in-
terface is used to communicate speech back to the user after
parsing the user’s input. The SpeechRecognition interface is
used for speech recognition services in web-based applica-
tions. In this project, it is used to understand and interpret as
human speech anything that is uttered into the microphone
when the system is recording.

SpeechRecognition wrapper annyang is a JavaScript library
and a wrapper around the SpeechRecognition interface of the
Web Speech API. It provides utilities for setting handlers
and callbacks when recognized speech is passed through the
SpeechRecognition service. It is used in this project to make
writing the various handlers and callbacks much easier.

Audio I/O The HTMLAudioElement provides programmatic
handling of sound embed in an HTML document. In this
project, it is used to play the sound of an alarm clock when a
user’s alarm went off.

Topic Modeling and Text Extraction compromise is a nat-
ural language processing (NLP) library that provides basic
document parsing capabilities such as inferring topics, dates,
numbers, etc. We used it to get specific features out of the
user’s input as text. compromise provides several plugins
with different specialized functionalities around text pars-
ing. compromise-numbers is a plugin that handles parsing
and formatting numbers and is required by the compromise-
dates plugin. compromise-dates is a plugin that handles ex-
tracting dates from text. We used this plugin extensively to
parse the user’s input for dates and times when working with

alarms and calendar events.

DISCUSSION

The process of developing a VUI in the browser revealed
many opportunities and challenges for working with speech-
based systems. We detail several that we encountered for
designers and developers to address in their own projects,
enumerate various alternatives that were considered for our
own work, and conclude with lessons learned.

Challenges

Speech Recognition One of the biggest problems for speech
recognizers is simply getting the correct input to be heard by
the system. The quality of the speech recognition service
played a major role in deciding how we built actions around
the recognition. There were several factors that were notably
affected by our choice of the Web Speech API:

(1) volume — users’ speaking volume led to many missed
words and phrases. Since we used a laptop computer to test
an in-browser VUI, there were limitations in how the com-
puter could be positioned in order to pick up voices around
it;

(2) accents — testing the system with colleagues that have
non-American accents would cause the API to return results
with missing or replaced words. This severely affected the
affordances of the system and could represent a major area
of bias in how speech recognition services are built; and

(3) colloquialisms — similarly to accents, colloquialisms were
not often picked up the speech recognition service. While it
has become a common cultural practice in the US to use for-
mal spoken language when working with voice technology
(such as telephone menu systems), the limitations that neces-
sitated such usage only solidify barriers in the way of wider
adoption of VUI technology. Representation remains a pri-
ority in creating affordance- and feedback- first VUISs.

Even when the system successfully navigated those chal-
lenges, there were still issues when using specific phrases.
For example, the speech recognition service did not recog-
nize the phrase ”o’ clock” when it was spoken as part of a
larger sentence. When this occurred, the recognizer did not
provide the system with any indication that this phrase was
indeed spoken, even if it did not understand it, leaving it out
entirely from the text available to parse. The Web Speech
API did not provide as much feedback as we needed to pass
on feedback to the end user.

We believe this reveals that the speech recognition service
used to build VUIs is one of the most important choices to
make as a designer or developer of VUIs. The tools used
to create systems heavily affect the outcome. In our case,
because of the limitations in parsing volume, accents, and
colloquialisms and no way to overcome them, we chose to
exclude the use of certain phrases. This ultimately prevented
us from providing affordances and feedback in areas they are
most needed. We envision several ethical implications in the
areas of bias and representation when it comes to future VUI
design, and we believe research in this area should focus on
mitigating these speech recognition issues.

Text Extraction and Topic Modeling Even when speech can
be recognized by a system, there is a lot of post-processing
that must happen to determine what the system should do
with the spoken text. In particular, numbers and dates were
complicated to parse out of text given the vast amount of
ways one can express a date and time or an amount of some-
thing. When text was determined to be a number or date,
context clues from the voice around that value would be
needed to correctly associate the spoken value with the sub-
ject receiving that value. For example, if a user said “create
an event for three today” the system cannot disambiguate
whether “three” is a time or a duration, while a human may
implicitly understand that the use of “three” is a time. We
frequently encountered issues with existing NLP libraries
failing to account for this and other difficult linguistic chal-
lenges when parsing user input. At the same time, getting
the correct subject from a sentence was even more difficult.
Topic modeling itself is an open problem in natural language
processing (NLP). Unfortunately, we were not able to resolve
topic modeling in our system in a consistent way, and thus
chose not to include the capabilities in the final build of the
prototype.

Lack of Keywords We used the JavaScript NLP library com-
promise to address many of the text extraction and topic mod-
eling issues we encountered. As the name suggests, the li-
brary compromises its available lexicon to vastly improve
speed and consistency of text parsing under the common as-
sumption that 80% of spoken English consists of only 1000
words. Lack of notable citation aside, we felt this was an in-
credibly interesting and promising idea to make use of in our
work. That is, when parsing numbers, dates, and sentence
subjects, we assumed the 80% case of how a user might in-
dicate these things and ignored the 20% of “special cases”.
This 20% usually fell under the situation when no keywords
were able to be parsed in the sentence — nothing about alarms,
events, dates, numbers, etc. So, what should happen? This
is where NLP can play a major role in the future of VUI
development. As the ubiquity, robustness, and interoper-
ability of NLP libraries grows, we should look to incorpo-
rate topic modeling and text extraction into speech recogni-
tion software. This lowers the barrier of entry for writing
VUlI-based applications and could result in speech technol-
ogy breakthroughs.

Design Alternatives

We considered various alternate techniques for designing a
conversational VUI that did not make it into the final proto-
type system.

Conversational Maxims Grice’s four maxims of conversa-
tion [5] can be used to govern the behavior of a conversa-
tional agent:

(1) be truthful — e.g., the system should not intentionally
report information that is not directly related to internally
stored data,

(2) provide as much information as necessary, but no more
than needed — e.g., the system should deliver only the data
requested by the user or perform only the requested action,

(3) stay relevant to the user’s needs/context — e.g., the system
should respond contextually to the user, and

(4) be clear, concise, and unambiguous — e.g., the system
should provide feedback in the form of short statements that
a task has been completed.

Contextual Responses Voice user interfaces can also de-
velop a context around the current “topic” of conversation,
in order to afford more streamlined and pleasant interactions
with the interface. For example, using pronouns such as “it”
to implicitly describe the subject of a sentence based on con-
text around the sentence. We envisioned such interactions
requiring an examination of the information flow when trans-
forming GUIs into SUIs [20], as users could easily loose con-
text themselves about what a pronoun is refering to. At the
same time, such affordances could vastly improve the expe-
rience of using a VUI and even improve the mechanics.

Sub-conversations Consider the back-and-forth nature of
conversation. Natural speech patterns often form a series
of clarifying questions that helps both participants make in-
cremental progress towards a common understanding with-
out requiring the intermediate steps to be repeated over and
over again. In this way, we envisioned that our system could
ask for clarification based on recent interactions, or in other
words, have a sub-conversation around whatever the current
context is. For example, imagine a user asking “can you set
an event for five p.m.”. A conversational system might reply
“you’ve got a phone call scheduled with Steve then”. From
there, the sub-conversation would allow both the system and
user to come to a common understanding — user: “ok, what
about 627 — system: "I can do that!”. This concept could be
replicated across functions beyond scheduling.

Sentiment Analysis Sentences also carry emotional weight
to them when spoken aloud. Humans commonly use such
emotional “cues” to guide their verbal responses in natural
conversation. We envisioned a conversational VUI that could
also pick up on such cues and develop responses that appro-
priately addressed how the user was feeling. For example, if
the user was angry and yelled at the system, we would have
the system talk briefly with the user about the issue before at-
tempting to continue. NLP already provides facilities to de-
termine various emotional aspects of word choice, phrasing,
and delivery. However, text can often fail to convey emotion
even when read by humans, and thus we consider that such a
solution would ideally be built directly into the speech recog-
nition service.

Implementation Alternatives

We also considered alternative applications that could work
in this space as well. These were not included in the final
build.

Note-taking application Note-taking applications, such as
Apple’s Notes app [6], let users work with text data. Con-
sidering the ubiquity of text-related operations that users can
perform using graphical user interfaces, we wanted to ex-
plore the ability for our interface to replicate similar tasks
using voice. We categorized the tasks users would have been
able to accomplish as follows:

(1) write — the user can dictate individual notes to be recorded
as text,

(2) group — the user can group these notes into single-level
lists,

(3) search — the user can ask for the containing list(s) or
note(s) that match the conditions of a search phrase, and

(4) read — the user can request audio playback of any note.

Lessons Learned

From our system, we learned several lessons that should be
taken into careful consideration when designing future sys-
tems.

Expect the unexpected. Elements of VUI design evolve
rapidly: grammar (including accents and colloquialisms);
prosody (sentiment analysis); speech recognition services
(and associated APIs); speech synthesis services; natural lan-
guage processing; etc. Building code to handle such edge
cases in an affordance- and feedback- first way makes for a
more robust and rewarding system for users.

Your choice of APl matters. As discussed in the challenges
with speech recognition section, the inability to debug how
speech was being recognized inhibited us from parsing cer-
tain phrases. It is vital that designers and developers give due
consideration to the quality of the recognition service they in-
corporate in their system. This only further cements the idea
that...

Representation matters. Systems will only be effective in-
sofar as they represent the user’s voice. There are many ethi-
cal implications that deserve consideration, including bias in
how recognizers respond to accents and colloquialisms, ac-
cessibility for diverse audiences, etc.

Look to other areas for inspiration. By thinking about how
to incorporate ideas from a broader spectrum of contexts, de-
velopers can often find inspiration and use cases from related
libraries. In our case, NLP revealed many new ideas for in-
terpreting voice by using text.

Build for the 80% use case. Making compromises in me-
chanics can improve the affordances and feedback of your
system tremendously.

CONCLUSION

Our conversational VUI prototype prioritizes various affor-
dances and feedback methods while attempting to minimize
the loss in mechanics throughout the user experience. Devel-
opment of our system revealed that there are several major
challenges involved with speech recognition, text extraction,
topic modeling, and a lack of keywords. Investigating these
issues revealed opportunities to consider accessibility, bias,
and representation in future work on speech recognition ser-
vices and the VUIs that adopt them. These results can have
far-reaching implications for the designer or developer look-
ing to create novel VUI-based technology.

REFERENCES
1. Samer Al Moubayed and Jill Lehman. Design and
architecture of a robot-child speech-controlled game.

10.

11.

12.

13.

14.

15.

In Proceedings of the Tenth Annual ACM/IEEE Inter-
national Conference on Human-Robot Interaction Ex-
tended Abstracts, pages 79-80, 2015.

. Jonathan Allen, M Sharon Hunnicutt, Dennis H Klatt,

Robert C Armstrong, and David B Pisoni. From text
to speech: The MITalk system. Cambridge University
Press, 1987.

. Vikas Ashok, Yevgen Borodin, Yury Puzis, and IV Ra-

makrishnan. Capti-speak: a speech-enabled web screen
reader. In Proceedings of the 12th International Web for
All Conference, pages 1-10, 2015.

. Microsoft Corporation. Outlook web app, 2021. http

s://outlook.com/.

. Herbert P Grice. Logic and conversation. In Speech

acts, pages 41-58. Brill, 1975.

. Apple Inc. Notes, 2021. https://apps.apple.c

om/us/app/notes/id11101451009.

. Google LLC. Clock, 2021. https://play.googl

e.com/store/apps/details?id=com.goog
le.android.deskclock.

. Bruce T Lowerre. The harpy speech recognition system.

Carnegie Mellon University, 1976.

. M Manjutha, J Gracy, P Subashini, and M Krishnaveni.

Automated speech recognition system—a literature re-
view. COMPUTATIONAL METHODS, COMMUNI-
CATION TECHNIQUES AND INFORMATICS, page
205, 2017.

Karen Myers, Pauline Berry, Jim Blythe, Ken Con-
ley, Melinda Gervasio, Deborah L McGuinness, David
Morley, Avi Pfeffer, Martha Pollack, and Milind
Tambe. An intelligent personal assistant for task and
time management. Al Magazine, 28(2):47-47, 2007.

André Natal, Glen Shires, and Philip Jagenstedt. Web
speech api, 2020. https://wicg.github.io/s
peech-api/.

Don Norman. The design of everyday things: Revised
and expanded edition. Basic books, 2013.

Charles L Ortiz. The road to natural conversational
speech interfaces. IEEE Internet Computing, 18(2):74—
78, 2014.

Edison Research. The smart audio report. National
Public Media, Apr 2020.

Johan Schalkwyk, Doug Beeferman, Francoise Beau-
fays, Bill Byrne, Ciprian Chelba, Mike Cohen, Maryam
Kamvar, and Brian Strope. “Your Word is my Com-
mand”: Google Search by Voice: A Case Study, pages
61-90. Springer US, Boston, MA, 2010.

16.

17.

18.

19.

20.

21.

Lisa Stifelman, Barry Arons, and Chris Schmandt. The
audio notebook: paper and pen interaction with struc-
tured speech. In Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 182—
189, 2001.

Paul Taylor. Text-to-speech synthesis. Cambridge uni-
versity press, 2009.

Markku Turunen, Aleksi Kallinen, Ivan Sanchez,
Jukka Riekki, Juho Hella, Thomas Olsson, Aleksi
Melto, Juha-Pekka Rajaniemi, Jaakko Hakulinen, Erno
Mikinen, et al. Multimodal interaction with speech and
physical touch interface in a media center application.
In Proceedings of the International Conference on Ad-
vances in Computer Enterntainment Technology, pages
19-26, 2009.

Nicole Yankelovich and Jennifer Lai. Designing speech
user interfaces. In CHI 98 Conference Summary on
Human Factors in Computing Systems, pages 131-132,
1998.

Nicole Yankelovich, Gina-Anne Levow, and Matt
Marx. Designing speechacts: Issues in speech user in-
terfaces. In Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 369-376,
1995.

Roman Zenka and Pavel Slavik. Supporting ui design
by sketch and speech recognition. In Proceedings of the
3rd annual conference on Task models and diagrams,
pages 83-90, 2004.

